飯塚 怜

飯塚 怜








東京大学大学院理学系研究科生物科学専攻 助教




  1. 迅速がん診断デバイスの開発
  2. 液滴を利用した機能性分子の探索・創出および微生物のゲノム解析
  3. 1分子蛍光イメージング・光ピンセットを利用したタンパク質・超分子複合体の機能・構造解析





  • 2001年3月

    東京農工大学工学部生命工学科 卒業

  • 2002年3月

    東京農工大学大学院工学研究科博士前期課程生命工学専攻  修了(短縮修了)

  • 2004年9月

    東京農工大学大学院工学教育部博士後期課程生命工学専攻  修了(短縮修了)


  • 2004年10月–2005年4月

    東京農工大学大学院工学教育部 産学官連携研究員

  • 2005年5月–2006年3月

    東京農工大学大学院工学教育部 特任助手

  • 2006年4月–2009年2月


  • 2009年3月–2012年10月

    東京大学大学院薬学系研究科 特任助教

  • 2012年11月–2020年3月

    東京大学大学院薬学系研究科 助教

  • 2020年4月-現在

    東京大学大学院理学系研究科生物科学専攻 助教

  • 2016年2月–現在

    ナノ医療イノベーションセンター 客員研究員



  1. Kim, B. S., Naito, M., Kamegawa, R., Kim, H. J., Iizuka, R., Funatsu, T., Ueno, S., Ichiki, T., Kishimura, A., and Miyata, K. (2020). Photo-reactive oligodeoxynucleotide-embedded nanovesicles (PROsomes) with switchable stability for efficient cellular uptake and gene knockdown. Chem. Commun. 56, 9477–9480 (2020)
  2. Muta, M., Iizuka, R., Niwa, T., Guo, Y., Taguchi, H., and Funatsu, T.: Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest. Biochem. J. 477, 557–566 (2020)
  3. Masubuchi, T., Endo, M., Iizuka, R., Iguchi, A., Yoon, D. H., Sekiguchi, T., Qi, H., Iinuma, R., Miyazono, Y., Shoji, S., Funatsu, T., Sugiyama, H., Harada, Y., Ueda, T., and Tadakuma, H. “Construction of integrated gene logic-chip.” Nat. Nanotechnol. 13, 933–940 (2018)
  4. Nakamura, K., Iizuka, R., Nishi, S., Yoshida, T., Hatada, Y., Takaki, Y., Iguchi, A., Yoon, D. H., Sekiguchi, T., Shoji, S., and Funatsu, T. “Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform.” Sci. Rep. 6, 22259 (2016).
  5. Ueno, S., Hirai, T., Sato, S., Biyani, M., Kuramochi, H., Iizuka, R., Akagi, T., Funatsu, T., and Ichiki, T. “In situ synthesis and immobilization of enzyme molecules on microreactor array chips.” J. Photopolymer Sci. Technol. 28, 719–726 (2015).
  6. Yang, Z., Iizuka, R., and Funatsu, T. “Nascent SecM chain outside the ribosome reinforces translation arrest.” PLoS ONE 10, e0122017 (2015).
  7. Ono, T., Iizuka, R., Akagi, T., Funatsu, T., and Ichiki, T. “Optical observation of deep bulk damage in amorphous perfluorocarbon films produced by UV photons emitted from low-pressure argon plasmas.” J. Photopolymer Sci. Technol. 27, 393–398 (2014).
  8. Takei, Y., Iizuka, R., Ueno, T., and Funatsu, T. “Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes.” J. Biol. Chem. 287, 41118–41125 (2012).
  9. Masuda, T., Petrov, A., Iizuka, R., Funatsu, T., Puglisi, J. D., and Uemura, S. “Initiation factor 2, tRNA, and 50S subunits cooperatively stabilize mRNAs on the ribosome during initiation.” Proc. Natl. Acad. Sci. U. S. A. 109, 4881–4885 (2012).
  10. Ono, T., Iizuka, R., Akagi, T., Funatsu, T., and Ichiki, T. “Damage-free fabrication of perfluoropolymer microaperture array device for single-molecule imaging.” Trans. Mater. Res. Soc. Jpn. 36, 553–556 (2011).
  11. Haneoka, M., Shirasaki, Y., Sugino, H., Aoki, T., Arakawa, T., Ozaki, K., Yoon D. H., Ishii, N., Iizuka, R., Shoji, S., and Funatsu, T. “Microfluidic active sorting of DNA molecules labeled with single quantum dots using flow switching by a hydrogel sol-gel transition.” Sensor Actuat. B-Chem. 159, 314–320 (2011).
  12. Iizuka, R., Ueno, T., Morone, N., and Funatsu, T. “Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.” PLoS ONE 6, e22253 (2011).
  13. Iizuka, R., Yamagishi-Shirasaki, M., and Funatsu, T. “Kinetic study of de novo chromophore maturation of fluorescent proteins.” Anal. Biochem. 414, 173–178 (2011).
  14. Sameshima, T., Iizuka, R., Ueno, T., Wada, J., Aoki, M., Shimamoto, N., Ohdomari, I., Tanii, T., and Funatsu, T. “Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides.” J. Biol. Chem. 285, 23159–23164 (2010).
  15. Sameshima, T., Iizuka, R., Ueno, T., and Funatsu, T. “Denatured proteins facilitate the formation of the football-shaped GroEL-GroES complex.” Biochem. J. 427, 247–254 (2010).
  16. Sugino, C., Hirose, M., Tohda, H., Yoshinari, Y., Abe, T., Giga-Hama, Y., Iizuka, R., Shimizu, M., Kidokoro, S., Ishii, N., and Yohda, M. “Two small heat shock proteins of a fission yeast, Schizosaccharomyces pombe, function in different manner to cope with wide range of temperatures and various denatured proteins.” Proteins 74, 6–17 (2009).
  17. Kanzaki, T., Iizuka, R., Takahashi, K., Maki, K., Masuda, R., Sahlan, M., Yébenes, H., Valpuesta, M. J., Oka, T., Furutani, M., Ishii, N., Kuwajima, K., and Yohda, M. “Interaction between helical protrusions induces closure of the built-in lid of group II chaperonins.” J. Biol. Chem. 283, 34773–34784 (2008).
  18. Kida, H., Sugano, Y., Iizuka, R., Fujihashi, M., Yohda, M., and Miki, K. “Structural and molecular characterization of the prefoldin β subunit from Thermococcus strain KS-1.” J. Mol. Biol. 383, 465–474 (2008).
  19. Suzuki, M., Ueno, T., Iizuka, R., Miura, T., Zako, T., Akahori, R., Miyake, T., Shimamoto, N., Aoki, M., Tanii, T., Ohdomari, I., and Funatsu, T. “Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to folding-competent state.” J. Biol. Chem. 283, 23931–23939 (2008).
  20. Sameshima, T., Ueno, T., Iizuka, R., Ishii, N., Terada, N., Okabe, K., and Funatsu, T. “Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle and their number ratio is determined by nucleotide in the trans-ring.” J. Biol. Chem. 283, 23765–23773 (2008).
  21. Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., Ueda, T., Puglisi, J. D., and Funatsu, T. “Single molecule imaging of full protein synthesis by immobilized ribosomes.” Nucleic Acids Res. 36, e70 (2008).
  22. Iizuka, R., Sugano, Y., Ide, N., Ohtaki, A., Yoshida, T., Fujiwara, S., Imanaka, T., and Yohda, M. “Functional characterization of prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1.” J. Mol. Biol. 377, 972–983 (2008).
  23. Saji, H., Iizuka, R., Yoshida, T., Abe, T., Kidokoro, S., Ishii, N., and Yohda, M. “Role of IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7.” Proteins 71, 771–782 (2008).
  24. Ohtaki, A., Kida, H., Miyata, Y., Ide, N., Yonezawa, A., Arakawa, T., Iizuka, R., Noguchi, K., Kita, A., Odaka, M., Miki, K., and Yohda, M. “Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins.” J. Mol. Biol. 376, 1130–1141 (2008).
  25. Kurimoto, E., Nishi, Y., Yamaguchi, Y., Zako, T., Iizuka, R., Ide, N., Yohda, M., and Kato, K. “Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy.” Proteins 70, 1257–1263 (2008).
  26. Ohtaki, A., Nakano, Y., Iizuka, R., Arakawa, T., Yamada, K., Odaka, M., and Yohda, M. “Structure of aspartate racemase complexed with a dual substrate analogue, citric acid, and implications for the reaction mechanism.” Proteins 70, 1167–1174 (2008).
  27. Horiuchi, H., Iwami, N., Tachibana, F., Ohtaki, A., Iizuka, R., Zako, T., Oda, M., Yohda, M., and Tani, T. “Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction.” J. Lumin. 127, 192–197 (2007).
  28. Yoshida, T., Iizuka, R., Itami, K., Yasunaga, T., Sakuraba, H., Ohshima, T., Yohda, M., and Maruyama, T. “Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1; the effects of beryllium fluoride.” Extremophiles 11, 225–235 (2007).
  29. Zako, T., Murase, Y., Iizuka, R., Yoshida, T., Kanzaki, T., Ide, N., Maeda, M., Funatsu, T., and Yohda, M. “Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate.” J. Mol. Biol. 364, 110–120 (2006).
  30. Yoshida, T., Kanzaki, T., Iizuka, R., Komada, T., Zako, T., Suzuki, R., Maruyama, T., and Yohda, M. “Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1.” Extremophiles 10, 451–459 (2006).
  31. Iizuka, R., Yoshida, T., Ishii, N., Zako, T., Takahashi, K., Maki, K., Inobe, T., Kuwajima, K., and Yohda, M. “Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: Implications that group II chaperonins operate as a two-stroke engine.” J. Biol. Chem. 280, 40375–40383 (2005).
  32. Hirose, M., Tohda, H., Giga-Hama, Y., Tsushima, R., Zako, T., Iizuka, R., Pack, C., Kinjo, M., Ishii, N., and Yohda, M. “Interaction of a small heat shock protein of the fission yeast, Schizosaccharomyces pombe, with a denatured protein at elevated temperature.” J. Biol. Chem. 280, 32586–32593 (2005)
  33. Zako T., Iizuka, R., Okochi, M., Nomura, T. Ueno, T., Tadakuma, H., Yohda, M., and Funatsu, T. “Facilitated release of substrate protein from prefoldin by chaperonin.” FEBS Lett. 579, 3718–3724 (2005)
  34. Okochi, M., Nomura, T., Zako, T., Arakawa, T., Iizuka, R., Ueda, H., Funatsu, T., Leroux, M., and Yohda, M. “Kinetics and binding sites for interaction of prefoldin with group II chaperonin: contiguous non-native substrate and chaperonin binding sites in archaeal prefoldin.” J. Biol. Chem. 279, 31788–31795 (2004).
  35. Iizuka, R., So, S., Inobe, T., Yoshida, T., Zako, T., Kuwajima, K., and Yohda, M. “Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin.” J. Biol. Chem. 279, 18834–18839 (2004).
  36. Shomura, Y., Yoshida, T., Iizuka, R., Maruyama, T., Yohda, M., and Miki, K. “Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms.” J. Mol. Biol. 335, 1265–1278 (2004).
  37. Iizuka, R., Yoshida, T., Shomura, Y., Miki, K., Maruyama, T., Odaka, M., and Yohda, M. “ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin.” J. Biol. Chem. 278, 44959–44965 (2003).
  38. Iizuka, R., Yoshida, T., Maruyama, T., Shomura, Y., Miki, K., and Yohda, M. “Glycine at the 65th position plays an essential role in ATP dependent protein folding by archaeal group II chaperonin.” Biochem. Biophys. Res. Commun. 289, 1118–1124 (2001).


  1. 飯塚 怜:ナノ・マイクロデバイスと1分子検出顕微鏡を用いた生体分子の機能解析と新機能創生, YAKUGAKU ZASSHI 140, 1299–1303 (2020)
  2. 飯塚 怜:ナノ・マイクロ構造体を利用した蛍光イメージング,化学工業,70,8–13 (2019)
  3. 飯塚 怜,船津 高志:固定化リボソームを用いたタンパク質合成の一分子イメージング In 細胞・生体分子の固定化と機能発現(監修:黒田章夫),シーエムシー出版,238–246 (2018)
  4. 藤井 聡一郎,中村 和貴,飯塚 怜,船津 高志:マイクロ・ナノデバイスを用いた生体分子の機能解析と有用遺伝子の探索・回収,Molecular Electronics and Bioelectronics 28, 165–168 (2017)
  5. Iizuka, R., and Funatsu, T. “Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins.” Biophys. Physicobiol. 13, 63–69 (2016).
  6. Iizuka, R., Ueno, T., and Funatsu, T. “Detection and quantification of microRNAs by ligase-assisted sandwich hybridization on a microarray.” In Li, P. C. H., Sedighi, A., and Wang, L. (Eds) Microarray Technology: Methods and Applications (Methods in Molecular Biology), Humana Press, 53–65 (2016).
  7. 飯塚 怜,上野 太郎,船津 高志:変性タンパク質濃度に応じて巧みに反応を切り替えるシャペロニンGroEL, 生物物理, 54, 189–194 (2014).
  8. 飯塚 怜:一分子蛍光イメージング技術,ぶんせき,2013,25–31 (2013).
  9. Iizuka, R., Funatsu, T., and Uemura, S. “Real-time single-molecule observation of green fluorescent protein synthesis by immobilized ribosomes. “ In Mashanov, G. I., and Batters, C. (Eds) Single Molecule Enzymology: Methods and Protocols (Methods in Molecular Biology), Humana Press, 215–228 (2011).
  10. 飯塚 怜:ナノ開口基板を用いた生体分子間相互作用1分子蛍光イメージング In 医薬理工の異分野融合研究から見えた ナノバイオの未来(東京大学ナノバイオ・インテグレーション研究拠点:編), X-Knowledge, pp. 153 (2010).
  11. Zako, T., Iizuka, R., Kanzaki, T., Maeda, M., and Yohda, M.: Chaperonin and prefoldin – Two molecular chaperones that work cooperatively in Archaea and eukaryotes. In Moreland, E., and Vincent, C. (Eds.) Heat-Shock Proteins: International Research, Nova Science Publishers, Inc., New York, USA, 393–416 (2008).
  12. Robb, F. T., Izuka, R., and Yohda, M.: Protein Folding Systems. In Cavicchioli, R. (Ed.) Archaea MOLECULAR AND CELLULLAR BIOLOGY, ASM PRESS, Washington, USA, 209–223 (2007).
  13. 養王田 正文,飯塚 怜,座古 保,吉田 尊雄:超好熱性古細菌の分子シャペロン, 酵素工学ニュース, 第52号, 6–12 (2004).
  14. 吉田 尊雄,碓井 啓資,飯塚 怜,座古 保,養王田 正文:古細菌の分子シャペロンシステムの反応機構, 蛋白質核酸酵素, 49, 858–861 (2004).


  1. 特願2019-109092「RNAの解析方法、核酸の作製方法、核酸、キット、およびRNA解析システム」出願人:株式会社ニコン,国立大学法人東京大学,発明者:上野 太郎,船津 高志,飯塚 怜,鍾 興雅
  2. 特願2014-147726 「核酸の検出方法、捕捉プローブ、検出プローブセット、マイクロアレイ、核酸検出キット、核酸固定化固相、及び流体デバイス」 出願人:国立大学法人東京大学,株式会社ニコン,発明者:一木 隆範,上野 太郎,船津 高志,飯塚 怜,鈴木 久皇


  1. 2019年9月 2019年度日本薬学会関東支部奨励賞
  2. 2018年11月 酵素工学研究会 平成30年度酵素工学奨励賞
  3. 2018年9月 日本バイオイメージング学会 2018年度奨励賞
  4. 2017年8月 第30回バイオメディカル分析科学シンポジウム 星野賞 研究奨励賞
  5. 2016年12月 2016年度コスモ・バイオ学術論文賞
  6. 2015年3月 第21回リバネス研究費 エンバイオ賞
  7. 2014年4月 第17回リバネス研究費 オンチップ・バイオテクノロジーズ賞
  8. 2008年11月 極限環境微生物学会(現 極限環境生物学会)研究奨励賞